
Speed comparison of non-blocking list and  
global synchronized list 

 
 

Abstract. We tested the implementation of non-blocking linked lists described by Timothy L. 
Harris [1] on the MSIM simulator [2]. As the opponent in this comparison was choosen the 
global synchronized list – synchronization was in this case provided by mutex synchronization 
primitive.  
 

Introduction 
 

The study of Timothy L. Harris shows, that non-blocking linked lists can in many cases 
replace clasical synchronized lists and to do so with a significant optimalization of executing 
speed. This optimalization is achieved by appropriate algoritm by using synchronization 
instruction CAS (compare-and-swap) [3]. We tried to find out, if it is possible to use this 
measure of optimalization also for the simulator MSIM [2]. In the environment of simulator is 
impossible to guarantee the constant time of execution of the instruction, because this time 
depends on the architecture of PC, on which the simulator is running. Unfortunately to this 
fact is this study limited and does not try to compare non-blocking linked lists objectively. It 
is only about its informative character. 

First part is dedicated to the description of the architecture of PC, then comes the 
evaluation of both tested structures and special attention is devoted to the description of 
benchmark. 

The other part consists of results of the test, speed comparison of individual operations 
and structures. Last part contains final evaluation of the study and objective appraisal of 
whole work. 

The purpose of this study is also the opportunity of implementation of non-blocking 
linked lists in semestral project of the subject Operating systems at MFF UK, which takes 
place in the environment of simulator MSIM.  
 

Parametres & Architecture 
 

a) Architecture       

Following section consists of information about architecture of PC, on which the MSIM 
was installed. Then the parametres of testing and other important information for evaluating 
the test are published. 

The simulator MSIM was installed on PC Siemens-Fujitsu Lifebook S6410, on the 
procesor Intel Core Duo T7250 with operating memory 2 GB RAM and operating system 
Ubuntu 11.10 Oneiric Ocelot. 

 
 
 
 
 



b) Structures 
 

Non-blocking linked lists were implemented with the same interface and algorithm as 
presented the study of Timothy L. Harris [1]. Elements of the list were modified so that they 
can include the key and data variable. The list is internally sorted by the key variables. 

For the structure of non-blocking linked lists was used the interface: 
 
 

bool nblock_list_insert (nblock_list_t* list, unsigned long key, void* data); 
bool nblock_list_remove (nblock_list_t* list, unsigned long search_key, void** data_ptr); 
bool nblock_list_find (nblock_list_t* list, unsigned long search_key, void** data_ptr); 
 
 

 

Global synchronized list was implemented by using mutex synchronization primitive. The 
interface was used similar as in the case of non-blocking linked lists, so that speeds of 
individual operations could be compared. In every operation that operates with the elements 
of the list, the global mutex is locked. That allows synchronization of paralel operations. 

For the structure of global synchronized list was used the interface: 
 
 

bool sync_list_insert (sync_list_t* list, unsigned long key, void* data); 
bool sync_list_remove (sync_list_t* list, unsigned long search_key, void** data_ptr); 
bool sync_list_find (sync_list_t* list, unsigned long search_key, void** data_ptr); 

 

Benchmark 
 

Benchmark was designed so that it can test all the operations included in the interface of 
both structures and to their speed comparison. Because possibilities of measuring the exact 
time are limited in MSIM only to unit of seconds (MSIM mediates only the time of hosting 
device), it is appropriate to design the test quite long, so that the results can be comparable. 

The benchmark itself consists of six parts. First three of them test the speed of operations 
for elements with random generated keys. The other three parts test operations only for fixed 
keys. In the first and fourth part are the elements inserted to the list, the second and fifth is 
used for their research and finally the third and sixth for their removing.  

In every test is first of all made the set number of threads and each of them makes the 
constant number of operations on the set shared list. The important condition is the fact, that 
all the threads start the test code at the same time. The time that runs from the start of the test 
to the final end of all threads is measured and recorded. 

By using the modification of macros of the source files of benchmark it is possible to 
modify the number of operations for every thread, scale of generating of random numbers atc. 

 

Results 
 

In this section are presented the results for 3-15 threads with constant number of 
operations 10000 and the scale of generated keys 0-255. For the set number of threads was 
always made 30 tests and for the following graphs are used aritmetic averages and 
corresponding standard deviations. 

For every test of benchmark is constructed a graph, which compares the time of the test 
for non-blocking and synchronized structure. 

 



a) Random insert test 
 

In this section is tested operation insert with random generated key elements in the range 
of 0-255. It is 10000 operation for every thread. 
 

Random insert test

0,00

10,00

20,00
30,00

40,00

50,00

60,00

70,00
80,00

90,00

100,00

3 4 5 6 7 8 9 10 11 12 13 14 15
Thread count

T
im

e 
(i

n
 s

ec
o

n
d

s)

Global synchronized list Non-blocking list
 

 
  

 

b) Random find test 
 

In this section is tested operation find with keys generated in section a). The keys are used 
in the same order. It is 10000 operation for every thread. 
 
 

Random find test

0,00

10,00
20,00

30,00

40,00
50,00

60,00

70,00

80,00
90,00

100,00

3 4 5 6 7 8 9 10 11 12 13 14 15
Thread count

T
im

e 
(i

n
 s

ec
o

n
d

s)

Global synchronized list Non-blocking list
 

 



 

c) Random remove test 
 

In this section is tested operation remove with keys generated in section a). The keys are 
used in the same order. It is 10000 operation for every thread. 
 

Random remove test

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

3 4 5 6 7 8 9 10 11 12 13 14 15
Thread count

T
im

e 
(i

n
 s

ec
o

n
d

s)

Global synchronized list Non-blocking list
 

 
 

d) Direct insert test 
 

In this section is tested operation insert with constant key. It is 10000 operation for every 
fibre. 
 

Direct insert test

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

3 4 5 6 7 8 9 10 11 12 13 14 15
Thread count

T
im

e 
(i

n
 s

ec
o

n
d

s)

Global synchronized list Non-blocking list
 

 



 

e) Direct find test 
 

In this section is tested operation find with constant key. It is 10000 operation for every 
thread. 
 

Direct find test

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

3 4 5 6 7 8 9 10 11 12 13 14 15
Thread count

T
im

e 
(i

n
 s

ec
o

n
d

s)

Global synchronized list Non-blocking list
 

 
 

f) Direct remove test 
 

In this section is tested operation remove with constant key. It is 10000 operation for 
every thread. 
 

Direct remove test

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

3 4 5 6 7 8 9 10 11 12 13 14 15
Thread count

T
im

e 
(i

n
 s

ec
o

n
d

s)

Global synchronized list Non-blocking list
 

 



 

Conclusion 
 

From stated results we can see, that with set parametres and number of threads are non-
blocking linked lists more efective in executing speed. 

For operations random insert and random find is speed difference noticeable, but not in 
the order of magnitude, while for operation random remove the difference in the order of 
magnitude is. This effect is made mainly by the fact, that non-blocking algoritms according to 
Timothy L. Harris  use logical and physical deleting. Logical deleting is extremely fast, it is 
only a write operation to shared variable. Physical deleting is not required immediately during 
the operation remove of set element and because of that it can be postponed to later passage 
through the list. 

Another interesting phenomena is testing of direct operations. The study shows, how is the 
locking by using synchronization primitives ineffective in the case of often busy memory 
locations. 

Finally it should be noted that non-blocking algoritms use as a strong condition of  their 
functioning single linked list, which limits the number of synchronized pointers to just one, 
while synchronization primitives are universal instrument and may be succesfully apply to 
whole scale of different tasks. It is also important to underline that the speed of these tests 
depends also on the architecture of host PC, which means that these results cannot be 
considered objective. 

All results of the tests is appended in the CVS file app_res.csv. 
 

References 
 

[1] Harris T. L.: A Pragmatic Implementation of Non-blocking Linked-Lists, Proceedings of the 15th 
International Conference on Distributed Computing, LNCS 2180, Springer-Verlag, 2001 
http://research.microsoft.com/en-us/um/people/tharris/papers/2001-disc.pdf 

 

[2] MSIM - light-weight computer simulator based on MIPS R4000 
http://d3s.mff.cuni.cz/~holub/sw/msim/ 

 
[3] CAS (compare-and-swap) instruction 
            http://en.wikipedia.org/wiki/Compare-and-swap 

 


